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SUMMARY.A binary sequence may give the appearance of being composed of alternating segments with 
relatively high and relatively low probability of success. Determining whether such an alternating pattern is 
significant is a multiple-changepoint problem where the number of segments and their success probabilities 
are unknown, with the added constraint of segment alternation. A dynamic programming method for deter- 
mining the optimal segmentation into a given number of segments is provided. Given this, a variation on the 
simulation method of Venter and Steel (1996, Computational Statistics and Data Analysis 22, 481-504) may 
be employed to test the null hypothesis of a homogeneous sequence as well as to estimate the number and 
location of changepoints. A sample application, the assessment of the possibility of genetic recombination 
in HIV sequences, is presented. 
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1. Introduction 
Given a binary sequence (a sequence of zeros and ones) corre- 
sponding to a sequence of independent observations, we may 
wish to evaluate the hypothesis that the sequence is composed 
of two sorts of segments, alternating with one another, that 
differ in the probability that a given position is a one; i.e., po- 
sitions in the sequence may be drawn from two categories hav- 
ing different probabilities of success, O1 and 02 . (These notions 
will be made more precise below.) The number of segments 
is not known in advance. Venter and Steel (1996) provided 
simulation-based methods for solving a related problem, that 
of a sequence of continuously valued observations that may 
be composed of some unknown number of segments, each of 
which has its own mean. It is shown here that related methods 
provide a solution for the alternating segments problem for bi- 
nary sequences. Previous approaches to multiple-changepoint 
estimation are discussed toward the end of the paper. 

2. Example Application 
One statistical problem in the analysis of genetic sequences 
that has arisen recently is that of determining whether a given 
strain of a virus is likely to have arisen as the result of re- 
combination between two donor strains. Because of possible 
implications for pathogenesis and treatment of the virus, this 
question has been of substantial interest in connection with 

the study of diversity of the human immunodeficiency virus 
(HIV). Although in this paper we will focus on the case of viral 
recombination, similar issues may arise in examining bacterial 
or eukaryotic genomes as well. 

The genetic material of two genetically distinct viruses may 
come into physical contact in such a way as to produce a new 
virus whose genetic sequence consists of alternating segments 
of DNA (or RNA) that correspond to pieces of the original 
viruses; this creation of a genetic chimera is known as recom- 
bination. Such contact may arise as the result of coinfection 
by two different strains in a natural infection, as the result of 
a laboratory artifact, or as the result of an instance of genetic 
engineering. 

Most isolates of HIV-1, the predominant form of the virus 
found in AIDS patients worldwide, fall into one of several ge- 
netically distinct clusters known as subtypes. Since viruses 
replicate in an asexual fashion, these subtypes for the most 
part evolve independently. However, recombination between 
two strains representing different subtypes of HIV-1 has been 
established in the laboratory as well as in natural infections in 
cases where the epidemiology of a dual infection can be care- 
fully documented (Diaz et al., 1995; Salminen et al., 1997). 
Recombination is of significant medical interest because of its 
relevance to antigenic diversity, vaccine efficacy, (multi-)drug 
resistance, and epidemiologic issues such as serial infection. 
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Given access to the sequence of the donor strains and a 
putative recombinant, determining whether the putative re- 
combinant did or did not exactly match segments from each 
of the donor strains would be trivial. However, in viruses such 
as the human immunodeficiency virus (HIV), the rate of ac-
cumulation of point mutations makes the isolation of a recom- 
binant virus and copies of its exact parental donors unlikely 
except in unusual cases where the epidemiology of infection 
can be documented clearly. (Even then, there may be inter- 
vening mutations.) In other viruses, we may be interested in 
ancient recombination events that again are clouded by accu- 
mulated mutations. In such circumstances, it may nonetheless 
be possible to establish a probable recombinant ancestry for 
a given isolate if its pattern of genetic relatedness to two or 
more other isolates forms a sort of patchwork, with some re- 
gions most similar to one strain and other regions most similar 
to another strain. 

If we align a potential recombinant sequence to two po- 
tential parental sequences, we may derive a binary match se- 
quence that indicates those positions at which the potential 
recombinant matches only one of the parental sequences, ex- 
cluding other positions as uninformative, as 

Query: ACGAGATAGACGATAGGCGATAGACTGGACGATACGATACGATACGA 

A : AGGAGTCAGCGGATGGGAGCCAGACTGGGCCATACGATACCATACCA 

B : ACGACAAAGACGATAGGCGATAGATCAGACTGTACAGTATCATATTA 

odd-numbered segment being O1 and the probability of a one 
at a position in an even-numbered segment being 02, O1 # 02, 
i.e., 

Ha : 3 an integer n,2 < n < N ,  and integers 71,. . . , rn- 1 

such that 

(i) 0 < r1 < . . .  < rn-1 < 1, 

(ii) pi = ~h for rh-1 < i < r h ,  

O1 for h odd
(iii) ~h = (2)O2 for h even; 

rl, . . . ,rn-1 ars changepoints; we define TO = 0 and rn = 1 for 
convenience. We speak of segment h extending from [rh-l+I ]  
to r h ,  inclusive. If h is odd, we say segment h is an odd- 
numbered segment, else it is even numbered. 

For an observed binary sequence of length 1, containing a 
given number of ones, we may ask three questions: Assum- 
ing that a sequence is to be cut into n alternating segments, 
where should the segment boundaries (changepoints) be lo- 
cated? Should a given segment be divided into 2 ,3 , .  . . , or N 
segments, possibilities that we denote H2, .  . . ,HN?  Finally, 
should we reject Ho? 

We proceed in order. Assuming that a given sequence is 
composed of n segments, we wish to estimate 71,. . . ,rn-1. 
First, we define a measure of the fit of a given segmenta- 

-1--0~---1~---1--1-11---000-~--0---00--0~~~~~~~
tion. Let an denote a segmentation (a specification of change- 

In this example, the potential recombinant query matches 
parent B but not A at nine positions in total, of which eight 
are clustered to the left portion of the sequence, while it 
matches A but not B at nine positions, clustered mostly to 
the right end of the sequence. Such a pattern might lead us 
to hypothesize that A and B are relatives of parental viruses 
that recombined to give rise to an ancestor of the query se- 
quence. There are variations on this method of reducing an 
alignment of sequences to a binary pattern involving the in- 
clusion of additional sequences; by excluding positions that do 
not clearly support greater similarity to A or to B, variation 
due to differences in sequence variability along the length of 
the alignment may be reduced (Robertson, Hahn, and Sharp, 
1995a). 

In general, the process of recombination may give rise to 
an offspring that is derived from alternating segments of the 
parental sequences, ABABA . . . . In evaluating a potential re- 
combinant sequence, one possible test is to ask whether we 
can reject a null hypothesis of uniformly distributed zeros 
and ones in our match sequence. Previous work on this ques- 
tion within the HIV literature has been limited to the single- 
changepoint case, with (invalid) application of single-change- 
point statistics to adjacent pairs of segments in sequences 
where more than one changepoint is suspected. 

3. Testing for Multiple Changepoints 

Let X be a sequence of independent Bernoulli random vari- 
ables, x l  . . . xl, with pi = Pr(xi = 1). Our null hypothesis is 
that the sequence is homogeneous, with pi = Pr(xi = I )  = O 
for 1 < i < 1. Consider this against the alternative hypoth- 
esis that the sequence is composed of between two and N 
segments, with the probability of a one at a position in an 

points) involving n segments. For a given segmentation spec- 
ifying 71, . . . , rn-1, construct a two-by-two table of counts of 
ones and zeros in the odd- and even-numbered segments. Let- 
ting O(an , i )  = 1 if position i occurs in an odd-numbered 
segment according to an and zero otherwise, we define a(an) ,  
b(an), an), and d(an),  the four elements of a 2 x 2 table of 
the number of ones and zeros occurring in the odd- and even- 
numbered segments of the given sequence and segmentation, 
i.e., 

where 

odd even 

1 1 a ( ~ n )1 an) 1 

On such a table (i.e., for a given segmentation), we may 
estimate O1 and O2 a s  
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From this table, we may also calculate any of several mea- 
sures of the degree to which ones and zeros are distributed 
randomly in the segments defined by the given segmentation. 
For example, we may determine values for chi-square (equiv- 
alent to the mean-squared error measure used by Venter and 
Steel (1996), as well as an extension of the Anderson-Darling 
statistic to multiple changepoints), Fisher's exact test, likeli- 
hood ratios under the null hypothesis and under the alterna- 
tive hypothesis indicated by the given segmentation, or a gen- 
eralization of the Kolmogorov-Smirnov two-sample statistic. 
These measures have been employed previously for the prob- 
lem of detecting a single changepoint in a binary sequence (see 
Halpern, 1999 for discussion of differences between measures). 

For concreteness and comparability to previous literature 
on recombination, consider the use of the chi-square. For a 
given sequence X and segmentation a,, let 

where x2(a,  b, c, d) is the standard chi-square for a 2 x 2 ta- 
ble. We then define an optimal segmentation as well as the 
maximal chi-square as follows. Let a; be that segmentation 

that maximizes x2(an) and let 

We choose a; to be our estimate of the boundaries for the 
segmentation of our sequence into n segments, i.e., a; is the 
answer to our first question. (An efficient algorithm for deter- 
mining a; is given in the Appendix.) The degree of support 
for this segmentation compared with the null hypothesis is 
measured by the value x:. 

Now for our second question: How do we choose among 
Ha, . . . ,HN? Define P, to be the fraction of random sequences 
of the same length and composition as the sequence of interest 
with Xk at  least as large as that for the sequence of interest. 
We then choose H,* such that P,* = min{P, : 2 5 n 5 N); 
for notational convenience, let this value be p N .  The mo- 
tivation behind this is that P, is a measure of how sur-
prising or unlikely a pattern involving n segments is under 
Ho By choosing n* to be the number of segments such that 
P,* = min{P2,. . . ,PN),we choose that number of segments 
that gives the fit hardest to explain as the result of chance. 

In practice, one aspect of this approach is not always fea- 
sible. For sequences for which Ho is clearly false, two or more 
of P2, .  . . ,PNmay be too small to be practically estimated 
via simulations; we are able to say that they are small but 
are not able to say which is the smallest. This does not sub- 
stantially interfere with the estimation of pN,but it does 
interfere with the selection of n*.Although this is essentially 
a model-choice problem, standard model-choice methods such 
as the Akaike Information Criterion (AIC) are not directly ap- 
plicable because of the optimization involved in the choice of 
changepoint locations (Auger and Lawrence, 1989) and be- 
cause of the alternating segments character of the model. As 
illustrated in Figure 1, E(~:) - E ( ~ : - ~ )  decreases progres- 
sively but is considerably uneven if the number of ones is much 
smaller or larger than the number of zeros. A similar plot 
of log likelihoods of sequences given optimal segmentations 
and MLE parameter values could be constructed, illustrating 
the difficulty with the AIC. However, a variation on the AIC 

I I I ~ I I I I J I I I I ~ I I I I  

-
50 ones, 50 zeros -
20 ones, 80 zeros -

-

-

0 I 1  I I l l I I l I I I l I I I I _  

5 10 15 20 
n = number of segments 

Figure 1. Expected changes in X: for increasing n. 

involving an empirical fit to the model may be proposed. Esti- 
mating E(&) by the mean of in the simulations conducted 
to estimate P,, let 

and choose n* = i such that Di = max, D,. 
Finally, our third question: Should we reject Ho? As dis- 

cussed by Venter and Steel (1996), the Bonferroni argument 
gives ( N  - l ) p N  as a conservative estimate of the probability 
of obtaining at least as small a value of pNas that of our se- 
quence of interest by chance. For the current implementation, 
concerned with binary sequences with an alternating pattern 
of segment types, the bound might be acceptable for N less 
than four or five but becomes excessively conservative as N 
rises. In simulations not presented here, this bound gave as 
much as a fourfold overestimation of the p-value for N = 10 
and up to a ninefold overestimation for N = 20. 

A more accurate estimate of significance may be obtained 
by the double-simulation method described in Appendix B 
of Venter and Steel (1996). Briefly, two sets of sequences 
are simulated, with the first providing estimates of the null 
distributions of each of x i , .  . . ,x k ;  from this, we determine 
P z , .. . ,PN,and thus pN,for each of the sequences in the 
second set, as well as for the sequence of interest. The frac- 
tion of sequences in the second set with pN< P*,where P* 
is the value of pNfor the sequence of interest, is our final 
estimate of a p-value. 

The methods just described depend on being able to de- 
termine optimal segmentations for a sufficiently large number 
of sequences simulated under the null hypothesis. An efficient 
way of determining a; is presented in the Appendix. 
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4. Illustration: Recombination in HIV 
Several studies have proposed that various isolates of HIV-1 
and HIV-2 may be recombinants between the major groups 
of genetic variation, or subtypes. The possibility of multiple 
changepoints may have a large impact on assessment of signif- 
icance, but several examples survive the closer scrutiny given 
here. 

Consider the case of the HIV-1 isolate known as  CI32. 
Robertson et al. (1995b) suggest segmenting the sequence of 
the gag gene from this virus into three pieces, with the first 
and last being (hypothesized to be) inherited from a virus of 
subtype A and the middle inherited from a virus of subtype 
D. Comparison of the sequence of C132 to reference sequences 
from these two subtypes, plus an outgroup sequence, accord- 
ing to the methods similar to those illustrated in (1) above, 
yields the following: The numbers of positions supporting as- 
signment to subtypes A and D, respectively, were 10 and 4 
for the first segment, 0 and 4 for the second segment, and 21 
and 7 for the third segment. 

Robertson et al. (1995b) used simulations on adjacent pairs 
of segments to estimate significance, following Maynard Smith 
(1992) in using the maximum chi-square measure for single 
changepoints to compare the observed patterns to the best 
segmentations of random sequences. Considering the first and 
second segments, a p-value of 0.081 was estimated; for the 
second and third segments, p = 0.037. Both tests appear to 
be of borderline significance, and the interpretation that is 
naively tempting is that two borderline tests taken together 
indicate a significant pattern. However, as discussed further in 
Halpern (1999), this ignores the fact that not only the internal 
changepoint but also one of the ends of each pair of segments 
was optimized. 

The methods described here may be used to take this into 
account. Based on the segmentation described above, we have 
Xi= 9.0540. Evaluation of 100,000 random binary sequences 
of length 46 containing 31 zeros gives ~ r { ~ i  2 9.054) -- 0.325. 
Suppose we retrospectively and, admittedly arbitrarily, de- 
cide to allow segmentations involving between two and five 
segments: Comparison of 100,000 additional sequences to the 
initial 100,000 indicates that pr{p5 5 0.325) = 0.57-hardly 
a significant result! 

Should this case make us reluctant to accept any proposed 
examples of recombination that involve multiple change- 
points? The remaining potential recombinants that Robertson 
et al. (199513) suggest may involve two or more changepoints 
are summarized in Table 1, with significance values assigned 
by the method presented in this paper. Segmentations involv- 
ing up to five segments were considered. For these examples 
and others in the HIV literature (not shown; see Robertson 
et al., 1995a; Salminen et al., 1995; Siepel et al., 1995; Cor- 
nelissen et al., 1996), the hypotheses of multiple-changepoint 
recombination are strongly supported by the data. 

5. Comparison to Alternative Methods 
Several methods for multiple-changepoint estimation have 
previously been proposed. For assessing recombination as pro- 
posed here, what is needed is a model involving alternation 
between two categories of segments whose parameters (here, 
O1 and 02) are estimated from the data; optimal, unbiased es- 
timation of the best segmentation, both in number of change- 
points and in their locations; and a test of the null hypothe- 
sis. None of the methods discussed below inherently provides a 

test of the null hypothesis; to the author's knowledge, there is 
no distributional theory for any of the methods. Monte Carlo 
simulations such as discussed above may be employed. 

Auger and Lawrence (1989) introduced a dynamic pro- 
gramming method that can estimate multiple changepoints; 
however, it does not solve the problem of a model with alter- 
nating segment types and unknown segment parameters. fi 
and Curnow (1990) proposed a related method for identifying 
the boundaries of alternating segments but required that the 
parameters O1 and O2 (their po and pl)  be specified in ad- 
vance. Both proposals offer heuristic approaches to the choice 
of the best number of segments. Indeed, Auger and Lawrence 
(1989) have a nice discussion of why the problem at hand does 
not readily fit methods designed for model selection in other 
contexts (e.g., the AIC, F-ratios, etc; see also Figure 1 here). 

Green (1995) introduced a method that includes model 
choice in Markov chain Monte Carlo (MCMC) estimation. His 
sample application involved determining the number and lo- 
cations of multiple changepoints. The method does not easily 
extend to an alternating segments model since the introduc- 
tion or deletion of a segment in such a model reverses the 
category of all following segments. 

Perhaps the clearest alternative to the current method is 
the hidden Markov model (HMM) approach described in 
Churchill (1989), which allows inference of multiple change- 
points under an alternating segments model as well as esti- 
mation of segment parameters. The HMM method implicitly 
considers all possible numbers of changepoints and identifies 
a best number of segments. The method is very computation- 
ally efficient and can be applied to sequences of almost any 
length. In addition, it can be extended to deal with multi- 
ple segment types and larger alphabets. However, there are 
also certain disadvantages that make the dynamic program- 
ming method proposed here a useful complement. Although 
it generally works well in practice, the HMM method does not 
provide a guaranteed optimal segmentation due to the use of 
expectation maximization (EM) in estimating model param- 
eters; convergence, both in terms of iterations and optimality, 
may especially suffer on sequences generated under the null 
hypothesis. The HMM method does not easily allow explicit 
comparison of different numbers of changepoints. For short 
sequences (length under loo) ,  at least as implemented by the 
current author, it is slower than the method introduced here. 
Finally, the architecture of the HMM imposes certain biases 
on the estimation of changepoint number and location. One 
manifestation of these biases is that the HMM favors a single 
changepoint over multiple changepoints, as illustrated in the 
following example: 

Input: 0001000100010001110111011100010001000111011101110111 


HMM: AAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 


DP: AAAAAAAAAAAAAAABBBBBBBBBBBAAAAAAAAAAABBBBBBBBBBBBBBB 


rHMM: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBB 


Given the input sequence, the Churchill HMM method gives 
the segmentation labeled HMM with two segments, while the 
current method gives the segmentation labeled DP with four 
segments (P2 -- 0.066 and P4= 0.004). When a single change- 
point is inferred, this allows the second state of the HMM 
(that corresponding to the second segment) to have zero prob- 
ability of a transition back to the first state. This example also 
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Table 1 

Evaluation of some putative HIV-1 recombinants 

KE124 gag+env 5 Subtype 100.06 0/100,000 3/100,000 

Segments A D 

Odd 72 8 
Even 4 60 

M AL gag+env 4 Subtype 60.92 0/100,000 

Segments A D 

Odd 39 7 
Even 13 73 

env Subtype 38.76 0/100,000 l O / l O O , O O O  

Segments A C 

Odd 1 19 
Even 46 9 

"Common name of HIV-1 isolate suspected of being a recombinant. 
Gene(s) sequenced. 

Number of segments suspected. 

Table of counts of positions in odd and even segments matching one but not the other of the two hypoth- 

esized parental HIV-1 subtypes for optimal n-way segmentation. 
Chi-square for the optimized table of d. 
pn,the fraction of randomizations with at  least as large a value of Xi as that in the preceding column. A 

value of zero indicates that no simulation achieved as large a value. 
g Fraction of randomizations with p5 5 pn. 

illustrates another point: The HMM method has a bias, in significative constitue un problkme de changement multiple 
single changepoint estimates, toward having the changepoint oh le nombre de segments et leur probabilite de succks sont 
occur early rather than late. Here, input is a sort of palin- inconnus, avec la contrainte supplementaire d'alternance de 

drome in which xl-i = 1- xi. Consequently, the DP method segment. Une mkthode de programmation dynamique pour 

will score two segmentations the same if the locations of the determiner la segmentation optimale en un nombre donne de 
segments est fournie. Etant donne ce resultat, une variation 

changepoints of the first segmentation (rl . . . m) and the sec- de la methode de simulation de Venter et Steel (1996, Compu-
ond (7: . . .T;) are related by = 1 -ri +1,as in the HMM tational Statistics and Data Analysis 22,  481-504) peut Btre 
and rHMM patterns above. However, the HMM gives sub- employee pour faire le test de l'hypothkse nulle d'une sequence 
stantially different likelihoods to these segmentations. While homogkne, aussi bien que pour estimer le nombre et la posi- 
complications of the HMM (e.g., requiring transition proba- tion des changements. Comme application, nous presentons 
bilities [[I  - a, a], [a, 1- a]])could provide solutions to these la determination de la possibilite de recombinaison genetique 
cases, such solutions introduce their own biases. dans des sequence du virus du SIDA. 
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Determining Optimal Segmentations 


To enable the methods described above, a rapid way of deter- 
mining a; is needed. The following calculation determines the 
optimal n-segment model for a given sequence via recurrence 
relationships. Programs implementing these analyses, written 
in ANSI C, are available from the author. 

Conceptually, we subclassify segmentations involving n seg- 
ments according to k ,  the number of positions they assign to 
odd segments. For given n and k, we determine, via recurrence 
relationships, segmentations that give the extreme (largest 

and smallest) values of a ,  the number of ones assigned to odd 
segments. By evaluating the fit of these extreme segmenta- 
tions for the possible values of k, the best overall segmentation 
into n segments may be determined. 

Let Smn= {(rl ,  . . . ,rn-1)) be the set of partial segmen- 
tations dividing the subsequent X I , .  . . , xm into n segments 

kwith changepoints 0 < rl < . . . < 7,-1 < m. Let Smn= {s E 

SmnI a(s)  + b(s) = k), where a(s)  and b(s) are the numbers 
of ones and zeros in odd segments, respectively, according 
to s. From sA,, we desire one segmentation t k n  such that 

ka(tmn) = max{a(s? 1 s E skn) and another segmentation 
u k n  such that a(umn) = min{a(s) 1 s E s:,). The degen- 
erate case of a segmentation involving only the first position 
leads to the following initial conditions: 

Let o(n) = 1 if n is odd and zero otherwise and let 
A 

be the string concatenation operator. We may now write the 
following recurrence relationship: 

k-o(n)  k-o(n)If a(tm-l,n-l) = a(tm-l ,n),  more than one segmentation 
gives the same maximal number of ones in odd segments for 
given m, n,  and k; the recurrence relationship above arbi- 
trarily chooses the second clause in this case. The treatment 
of impossible conditions in which k < n/2 or n > m is ig- 
nored here; the exclusion of such conditions from calculations 
is straightforward. An analogous equation specifies recurrence 
relations for uh,. 

Given these relationships, for a given sequence, we may 
determine tFn, u k ,  a(&), and a(uFn) for 2 < n 5 N and 
n/2 5 k 5 m - (n - 1)/2. 

For all of the measures of fit of a segmentation discussed 
above, it can easily be proved that the best segmentation into 
a given number of segments, a;, will be drawn from among 
the sets {trn) and {uk) ;  i.e., we choose a; such that 

xn2 = x2 (a:) = max 

for n/2 5 k 5 m - (n  - 1)/2}. 

This final evaluation will involve no more than 2N1 evalua- 
tions of (or other measure of fit). An implementation of the 
calculation of {tFn) and { u k )  into a simple dynamic program- 
ming scheme will require time and memory whose orders are 
quadratic in 1, the sequence length, and linear in N ,  the max- 
imum number of segments. As described elsewhere (Pearson 
and Miller, 1992), memory requirements can be made linear 
in 1 and in N at the expense of approximately doubling the 
run time. 
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